~a CEMY,
P
3 o
g 5
3, “f
X
% ’
e -

SUNY
DO\VNSTATE

LAB

Our Unigue Capabilities

We develop empirically-derived models to link
the different spatial and temporal scale in the
brain. These include reaction-diffusion models of
molecular dynamics, hybrid networks with multi-
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compartment and event-driven neurons, neural .. _

field models, and high-level probabilistic models. | = ==
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Below: Simulated relations of molecular, cellular, and network dynamics in a model

of prefrontal cortex.

How does Ca travel between distant neuronal

Intracellular dynamics: calcium

locations quickly? interactions support persistent activity

Cytosol

Dendritic
Somatic

solid (stim'ed)
dashed (not)

ER: endoplasmic reticulum (has ER stores)

SERCA: sarco/endoplasmic reticulum Ca-ATPAse (pumps Ca into ER)

Reaction-diffusion model of CA wave
(sub-cellular) v layer 5

associated with working memory.

F Network effects: persistent activity in
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stimulus

Below: A hybrid network model (multicompartment and event-driven cells) based on
detailed cortical microcircuitry of mouse M1 that reproduces experimental firing rates,

physiological oscillations, and coincidence-detection.
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Morphologically realistic
multicompartment cell model of
M1 layer 5

Experimentally-derived
connectivity of model of

Below: A spiking network model of neocortex that reproduces physiological measures
at different scales: cell voltages, raster plots, LFPs, and cross-frequency coupling.
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Below: S1 model accurately reproduce physiological properties observed in vivo,

including firing rates, local field potentials, oscillations, traveling waves, and learning
of tactile stimulus fields. The model has also been integrated with a neural field model

of the basal ganglia to model the effects of Parkinson’s disease.
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« Additional group to extract machine learning principles from biomimetic

computational models.
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- Additional group to record high-resolution data from cortical microcircuits.
 Team that requires biomimetic multiscale computational models and algorihtmic

framework of information processing in the brain.

Chalasani, R & Principe, JC “Deep predictive coding networks” in Proc. Workshop Int. Conf. Learn. Represent., Apr. 2013.
Principe, JC and Chalasani, R, “Cognitive architectures for sensory processing” Proceedings of the IEEE, 2014

_ L Model-generated raster plot reproducing
M1 microcircuitry physiological properties of M1

Multiscale network activity Cross-frequency coupling from LFP of rat
(prefrontal cortex): experiment (left) vs.
simulation (right)
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Biomimetic multiscale modeling of cognitive architecture and active sensing
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Research Areas of Interest

We aim to build computational models that map the novel ‘cognitive architecture’
described below onto the known anatomy and physiology of brain circuitry.

We propose a Bayesian approach to sensory processing, using a hierarchical,
distributed architecture of dynamic processing elements. Key features:

1) bidirectional (top—down and bottom-up) processing enable perceptual
inference using both sensory data and empirical beliefs about causes from
higher layers;

2) dynamic components are at the core of the model, allowing beliefs about
temporal context to influence perceptual inference;

3) only salient features of the input data are stored, forming a compressed and
sparse representation;

4) re-utilization of same model within and across layers is reminiscent of cortical
microcircuits, and allows for efficient software/hardware implementation
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Two-layer hierarchical network illustrating structure of proposed architecture

 Each node consists of two modules: a state—space model, which extracted
features, and an invariance-learning model, which inferred causes by pooling

over states.

* Inference and parameter learning correspond to minimizing the same energy
function with respect to either the states or the causes.

 The model showed better classification by leveraging temporal and top-down
contextual information during inference, and was able to disambiguate a

synthetic video from correlated noise.
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Block diagram showing the flow of bottom—up and top—down information in the proposed architecture.

 We incorporate a key biological feature utilized by the visual system: eye
movement control (active sensing). We conceptualize visual parsing and
object identification as a continuous loop where a saccade marks the onset
of a new sampling episode.

« We propose using a multi-level, multi-method approach (single cell, CSD,
LFP, fMRI), to test the model predictions, by characterizing the spatial and
temporal dynamics of these interactive processes, and inform and constrain
computational modeling.
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Laminar CSD profiles from V1 awake monkey during free-viewing task; red arrows indicate
activity peaks between saccades to help visualize saccade-related dynamics
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